Postconditioning leads to an increase in protein S-nitrosylation.
نویسندگان
چکیده
Previous studies have shown a role for nitric oxide and S-nitrosylation (SNO) in postconditioning (PostC), but specific SNO proteins and sites have not been identified in the myocardium after PostC. In this study, we examined SNO signaling in PostC using a Langendorff-perfused mouse heart model. After 20 min of equilibrium perfusion and 25 min of global ischemia, PostC was applied at the beginning of reperfusion with six cycles of 10 s of reperfusion and 10 s of ischemia. The total period of reperfusion was 90 min. Compared with the ischemia-reperfusion (I/R) control, PostC significantly reduced postischemic contractile dysfunction and infarct size. PostC-induced protection was blocked by treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) (10 μmol/l; a constitutive NO synthase inhibitor), but not by either ODQ (10 μmol/l, a highly selective soluble guanylyl cyclase inhibitor) or KT5823 (1 μmol/l, a specific protein kinase G inhibitor). Two biotin switch based methods, two dimensional CyDye-maleimide difference gel electrophoresis (2D CyDye-maleimide DIGE) and SNO-resin-assisted capture (SNO-RAC), were utilized to identify SNO-modified proteins and sites. Using 2D CyDye-maleimide DIGE analysis, PostC was found to cause a 25% or greater increase in SNO of a number of proteins, which was blocked by treatment with l-NAME in parallel with the loss of protection. Using SNO-RAC, we identified 77 unique proteins with SNO sites after PostC. These results suggest that NO-mediated SNO signaling is involved in PostC-induced cardioprotection and these data provide the first set of candidate SNO proteins in PostC hearts.
منابع مشابه
Alterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملPULMONARY VASCULAR MUSCLE PROLIFERATION AS A RESULT OF PROTEIN AND mRNA-eNOS ALTERATIONS IN A RAT MODEL OF CHF
Endothelial Nitric Oxide Synthase (eNOS) produces nitric oxide (NO) from L-arginine and is important for the maintenance of cardiovascular homeostasis. Congestive heart failure (CHF) generally results in increased pulmonary blood flow and if untreated leads to pulmonary hypertension and end stage heart failure. We therefore hypothesized that increased pulmonary flow without changes in pres...
متن کاملProtein Redox Modification as a Cellular Defense Mechanism against Tissue Ischemic Injury
Protein oxidative or redox modifications induced by reactive oxygen species (ROS) or reactive nitrogen species (RNS) not only can impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible ox...
متن کاملIschemic Postconditioning Attenuates Bilateral Renal Ischemia-Induced Cognitive Impairments
Background and aim: Acute kidney injury (AKI) is a frequent complication of kidney failure with high mortality which leads to brain dysfunction. The aim of this study was to investigate the possible protective effect of ischemic postconditioning (IPo) against brain dysfunction induced by bilateral renal ischemia (BRI). Materials and methods: Male Wistar rats underwent BRI, sham or IPo surgery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 306 6 شماره
صفحات -
تاریخ انتشار 2014